Selection on codon bias in yeast: a transcriptional hypothesis
نویسنده
چکیده
Codons that code for the same amino acid are often used with unequal frequencies. This phenomenon is termed codon bias. Here, we report a computational analysis of codon bias in yeast using experimental and theoretical genome-wide data. We show that the most used codons in highly expressed genes can be predicted by mRNA structural data and that the codon choice at each synonymous site within an mRNA is not random with respect to the local secondary structure. Because we also found that the folding stability of intron sequences is strongly correlated with codon bias and mRNA level, our results suggest that codon bias is linked to mRNA folding structure through a mechanism that, at least partially, operates before pre-mRNA splicing. Consistent with this, we report evidence supporting the adaptation of the tRNA pool to the codon profile of the most expressed genes rather than vice versa. We show that the correlation of codon usage with the gene expression level also includes the stop codons that are normally not decoded by aminoacyl-tRNAs. The results reported here are consistent with a role for transcriptional forces in driving codon usage bias via a mechanism that improves gene expression by optimizing mRNA folding structures.
منابع مشابه
Identification of Synonymous Codon Usage Bias in the Pseudorabies Virus UL31 Gene
Background: Little knowledge of synonymous codon usage pattern of pseudorabies virus (PRV) genome, especially the UL31 gene in the process for its evolution is available. Objectives: In the present study, the codon usage bias between PRV UL31 sequence and the UL31-like sequences was identified. Materials and Methods: We used a comprehensive analysi...
متن کاملCodon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis
Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...
متن کاملThe 3-Base Periodicity and Codon Usage of Coding Sequences Are Correlated with Gene Expression at the Level of Transcription Elongation
BACKGROUND Gene transcription is regulated by DNA transcriptional regulatory elements, promoters and enhancers that are located outside the coding regions. Here, we examine the characteristic 3-base periodicity of the coding sequences and analyse its correlation with the genome-wide transcriptional profile of yeast. PRINCIPAL FINDINGS The analysis of coding sequences by a new class of indices...
متن کاملThe primary structure of the alcohol dehydrogenase gene from the fission yeast Schizosaccharomyces pombe.
We have cloned and sequenced the alcohol dehydrogenase gene of the fission yeast Schizosaccharomyces pombe. The gene was isolated by transformation and complementation of a Saccharomyces cerevisiae strain which lacked functional alcohol dehydrogenase with an S. pombe gene bank constructed in the autonomously replicating yeast plasmid YEp13. Southern hybridization analysis indicates that S. pomb...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کامل